Unveiling the Secrets of Lizard Color Divergence

By: Priscilla Younes, Neyana Fortes, and Jordan Marot (Stonehill College, BIO323: Evolution, Spring 2023)

Overview

In the contrasting environments of the alpine meadows and sand dunes of the Qinghai-Tibet Plateau, two lizard populations have a secret weapon: the ability to use their body color for camouflage and thermoregulation, a local adaptation that helps them survive. Not only have these lizards adapted their colors to hide from predators, but they’ve also regulated their internal temperature using melanin-producing genes. In “Genetically Encoded Lizard Color Divergence for Camouflage and Thermoregulation,” Sun and his team show how the power of local adaptation allows separate populations of toadhead agamas (Phrynocephalus putjatai) to thrive in two distinct habitats. Their study highlights the importance of local adaptation, where species develop traits suited to their specific environments, and how it can lead to the divergence of species to create a new one. With combined data from field observations, genetic analyses, and other experiments, we aim to explain why the lizards developed different colors and how this enhances their survival. Tune into the Evolution Unraveled podcast for a deeper dive into this concept!

Short podcast summarizing paper. Photo from https://www.inaturalist.org/taxa/109362-Phrynocephalus-putjatai/browse_photos
Continue reading “Unveiling the Secrets of Lizard Color Divergence”

How to break a sweat

By: Adam Ziegler, Matthew Papp, Shivam Gandhi, Nikolas Steege, Bio323 Evolution, Fall 2019, Stonehill College

Let’s face it, we all sweat. Despite sweat being such a common and prominent aspect of everyday life, not many people understand what causes sweating, or why not all mammals sweat. A recent paper explored the difference in human sweat compared to other primates from compiled data sets across three phylogenetic models. The research focused on the two glands that are primarily involved in sweating, the apocrine and eccrine glands. By combining glycogen concentration, climate, and distribution of glands, the authors were able to predict the eccrine gland ancestral relationship. The results show exactly how humans have come to evolve the current gland distribution and offer a previously unstudied insight into our ancestors. 

Demonstration of Sweat. Image credit:  https://en.wikipedia.org/wiki/Perspiration#/media/File:Demonstration_of_Sweat.jpg by Dogbertio 14 is licensed under CC BY 3.0
Continue reading “How to break a sweat”

Bitterness on the Brain

Bitterness on the Brain

by: Alex Baryiames, Cassie Daisy, Mohini Patel & Olivia Peterson (Stonehill College Evolution Fall 2017)

Eating something bitter isn’t a great experience. The moment the taste hits your mouth can be an unpleasant one, and often causes you to avoid that particular food in the future. In an effort to understand this phenomenon, researchers discovered that the ability to detect these bitter tastes might have some evolutionary benefits! Read on to discover how the ability of vertebrates to detect bitter tastes can be a protective mechanism against toxic materials, and greatly contributes to our survival!  

Listen Now:

Continue reading “Bitterness on the Brain”